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Abstract

A general assembly of n systems from k types of components is considered. The

techniques of majorization and Schur-function are utilized to pinpoint the optimal assembly

under several criteria. Earlier results of Derman, Lieberman and Ross(1972) and El-

Neweihi, Proschan and Sethuraman(1986) are generalized.
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1. Introduction

I In this paper we consider-the optimal assembly of n systems from components of k

types. Special cases of such a problem have been studied earlier in the literature. El-

Neweihi, Proschan and Sethuraman(1986) studied the case of a single type of components.

Derman, Leiberman and Ross(1972) considered the case where each system consisted of

one component of each of k types. We generalize the ideas of both of these papers to the

case where the systems may consist of varying numbers of components from more than

one type.

An assembly of the n systems corresponds to a partitioning A of the components to the

different systems. For more details see Section 2. When the components act independently,

we show in sections 2 and 3 that an intuitively motivated partitioning A* provides the

optimal assembly under many different criteria.

In Section 3, we allow each system to have dependent components, and under some

general conditions on the reliability function we show that the same partitioning A* pro-

vides an optimal assembly.

The results of this paper are based on the well known techniques of Schur- funtions

and majorization. This makes them clear and simple and at the same stime more general

than in the papers cited.

3
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2. Reliabilities of general asserably

with independent components

In.this section and the next section we will consider the assembly of n systems from

k types of components. To be more specific we shall assume that the jth system is a

series system of m ii components of type i, where all the components act inCpendently,

1 < i < k, 1 <j <n. The matrix M = (mij) will be called type-enumerator matrix of the

n systems, and for each j, 1 < j _5 n, the vector mi = (MI,m 23 ,. ... Mik) will be called

the type-enumerator vector of system j. We will make the following important assumption

about the type-enumerator vectors:

(2-1) MI > M2 .,

where the inequality sign between two vectors stands for coordinate-wise inequality.

By allowing some mij's to be equal to zero we can accomodate systems with fewer than

k types of components. Let M = En=1 rn', 1 < i < k. We need Mi components of type

i, 1 < i < k in order to assemble n systems with type-enumerator matrix M. For this, we

will only need to partition the M components of type i, into n subsets Ail, Ai 2 , .. -, Ain

of sizes Mil,M2, .. ,m,,, 1 < i < k and construct the jth system as a series system

with the rni. components of type i in Ai,, 1 < i < k, 1 < j < n. Each partitioning

A (A1i) of this type leads to a different assembly and there are Hl' , (, ,,,..).,)

such partitionings.

With no loss of generality we may assume that we can re-order the components of

type i (if necessary) so that their reliabilities satisfy

Pil :- PO2 - ... :- PiM,, for 1<i<k.

4
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The reliability of the jth system assembled from the partitioning A, like the one described

above, is given by

(2-2) R,(A) = 1j Jj p,.,
i=l dEAi 2

for 1 < j < n. Let Xi(A) = logRi(A), 1 < j 5 n. Then R(A) = (Rj(A),R2(A),...,

R,(A)) and X(A) = (X 1 (A),X 2 (A),...,X,,(A)) are the reliability vector and the log-

reliability vector of the n systems assembled from the partitioning A.

Consider the special partitioning A* defined as follows. The components of type

i are partitioned into sets A*, A*2 ,..., A* of sizes mil,ni2 ,..., rn, respectively, with

A*l = {1,2 ...,.m}, A*2 = {mil + 1,mMl + 2,....,rni + m,2 }, etc., 1 < i < k. Notice

that A1l consists of components of type i with the rn l lowest reliabilities, A 2 consists

of components of type i with the rn,2 next lowest reliabilities, ... , and A* consists of

components of type i with the rn, largest relibilities. Let R(A*) and X(A*) be the

reliability vector and the log-reliability vector of the n systems assembled from A*.

Theorem 2.1. Consider the general problem of assembling n series systems with k types

of components with a type-enumerator matrix M satifying (2-1). Let A be a general

partitioning and A* be the specific partitioning described as above. Let R(A) (X(A)) and

R(A*) (X(A*)) be the vector of reliabilities (log-reliabilities) of the n systems assenbled

according to the partitionings A and A* respectively. Then

X(A-) X(A)

where > stands for majorization.

Proof. It is clear that

x,(A < x(A) < . x(A).



Let X(I)(A) < X(2)(A) < ... < X)(A) be an increasing rearrangement of XI(A),

X2 (A),...,X,,(A). Notice that X,,(A*) is the sum of the mi,, largest log-reliabilities of

the components of type i for 1 < i < k, and thus exceeds X(,,) (A) which is the sum of

the log- reliabilities of m i components of type i with m' > m1, for 1 < i < k. A similar

argument shows that X,(A*) + X,,_.(A*) > X{,,)(A) + X({,1)(A). Continuing in this

fashion, we find that
l

X,(A*) + X,,_-(A*) + +Xi(A*) 01

> X(.)(A) + X(._)(A) + + Xy) (A), 2 < j n.

Also,
n k MV n

X (A*) = pi.= X(A).
j=1 11 1j=1

Hence
X(A') >X(A).!

Special cases of the general setup of assembly of systems described in this section and

of Theorem 2.1 have appeared earlier in the literature. The use of majorization allows us

to show later in this section, in a clear and simple fashion, that the partitioning A* leads

to the optimal assembly under several different criteria.

EI-Neweihi, Proschan and Sethuraman(1986) set k = 1, that is considering only one

type of components and studied the optimal assembly of n systems. Theorem 2.1 above

reduces to Theorem 2.1 of their paper.

Derman, Leirberman and Ross (1972) considered the case where the elements of the

type-enumerator matrix M are all equal to unity. In this case we have n components of

type i for 1 < i < n and there are (n!)k possible partitions. They use a different approach

to show that the partitioning A* is optimal under some of the criteria listed below.

6 V
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We now show that the partitioning A' found in Theorem 2.1 provides the optimal

assembly under several different criteria. We list these below as remarks.

Remark 2.2. Let N(A) be the number of functioning systems among the n systems

assembled from the partitioning A. Then E(N(A)), the expected number of functioning

systems is maximized for the partitioning A*. This follows from the fact that E(N(A)) =

'n exp(Xj(A)) is a Schur- convex function of X(A) and is maximized at A*.

Remark 2.3. Suppose that we allow only those systems to be assembled whose reliabilities

are at least 1/4. This is a condition that will be very often met in practice. Then the

variance of N(A), the number of working systems is minimized at A*. To see this we note

that

V(N(A)) ZeX(A)(1 - eX , (A))

j=1

and the function e'(1 - e') is concave for x > " Thus V(N(A)) is a Schur-concave

function of X(A) in the region X(A) > (, ,.., ) and is minimized at A*.

Remark 2.4. We can strengthen Remark 2.2 as follows. The number of working systems

N(A*) under A* is stochastically larger than N(A) for any other partitioning A. This

follows from Theorem 2.1 above and Theorem 2.2 of Pledger and Proschan(1971). This

result can be translated as follows: Consider a new system S(A) which is an r-out-of-

n system whose components are the n assembled systems according to partitioning A,

1 < r < n. Then the reliability of S(A) is maximized when it is constructed from the

partitioning A*.

Remark 2.5. Let Y(A) be the expected number of working components in the .J system

assembled from the partitioning A, 1 < j < n, and let Y(A) = (YI(A),...,Y,,(A)).

Assume further that nin = ni2 = "" = min for 1 < i < k. Then Y(A') > Y(A) for all

7
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A. This follows from the relation
kk

Y (A)= p ,
i--- aEA,,

and an argument similar to the one in the proof of Theorem 2.1. We can now state that A*

maximizes any Schur-convex function of Y(A) and minimizes any Schur-concave function

of Y(A). Examples of such functions are = F Y(A) , p > 1 and IL= Yj(A)

respectively.

8I
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3. Life times of general assembly

with independent components

In this section we extend the results of the previous section on optimal assembly of n

systems with k types of components and type-enumerator matrix M satisfying (2-1) to in-

clude a time element. Let the life-times of the Mi components of type i be Tj 1 , Tj2 ,. ., TiM.

and suppose that

at at at
(3-1) ii < Ti2 < ... < Tim,

for 1 < I < k. Let A be a partitioning of the components as described in the previous

section and let T,(A),T 2 (A),(A),..., T, (A) be the life-times of the n assembled systems

and let

T(A) = (T1 (A),T 2 (A),.. .,T.(A))

be the life-time vector corresponding to the partitioning A. We assume that the compo-

nents act independently, as in the previous section, and we therefore have, for each time

t> 0,

k

(3-2) P(Tj(A) > t) = f f P(Ti, > t),
,=I sEAj

1 < < _ n, which is analogous to (2-2). Condition (3-1) states that the ordering among

{P(Ti, > t), j < s < M, 1 < I < k} is the same for all t. The optimal partitioning A*

of the previous section which dependeds on this ordering remains invariant for all t. Thus

we obtain immediately from Theorem 2.1 and Remark 2.4 that

(log P(Ti(A-) > t),... ,logP(T, (A*) > t))

> (log P T(A)> t),...,ogP(T,,(A) > t))

9
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and

(3-4) ICTiCA*) _> t) > ICTiCA ) > t)

j"=I j'=I

for all t and all partitionings A. From (3-4) it follows that

at(3-5) T(,)(A') > T(,)(A)

for 1 < r < n and all partitionings A, where T(,)(A) is the r order statistic of (TI(A),

T2 (A),... ,T,(A)). As a further consequence, we obtain

n n

(3-6) E(g,(T(,)(A*))) E(gr(T(r)(A)))
r=1 r1

whenever g,. .- ,g, are increasing functions. In particular, if gr(x) x for 1 < r < n, we

obtain

which shows that a system consisting of using the n assembled systems one at a time in

succession has maximum expected life if assembled from the partitioning A*. We can

extend the result on individual order statistics in (3-5) to a result for the whole vector of

order statistics by strengthening condition (3-1) as follows. Assume that the component

life-times have proportional hazard functions and satisfy (3-1), i.e.,

(3-8) P(T,, > t)= exp(-,Ai. H(t)) .'

where 11(t) is a hazard function and

Ajl > Ai2 > > Am

for I < i < k. For any partitioning A, let

10

...........................................-.- !&



k

i=1 < Ai<

rn

and let A(A) = (Al(A),(A 2 (A)... A)). It easily follows that A(A*) _! A(A) for any

partitioning A. Futhermore (T(A),... ,T,,(A)) are independent random variables with

proportional hazards and P(Ti(A) > t) = exp(-A,(A) H(t)), 1 < j :5 n. From Theorem

3.4 of Proschan and Sethuraman(1976) it follows that

(3-9) (T()CA *), T(2) (A*),..) ~(A*) (T(j)CA), T(2)(A),...,T(n) (A))

for all partitionings A. This is a stronger result than (3-5). A consequence of (3-9) is

(3-10) ZTi(A*)_ E T(A)
j=1 j=I

which is stronger than (3-7).

Il
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4. Assembly of systems with one component of each type

In the previous two sections we studied the assembly of n series systems from k types

of components. In this section we study the assembly of more general systems. We will

assume that all the elements of the type-enumerator matrix M are equal to 1. We make this

assumption for reasons of simplicity. Thus we have n components of type i for 1 < i < k,

and we need to construct n systems, each of which needs one component of each type.

As before this can be done by using a partitioning A = (Ai), where Ai3 is the singleton

{a1i} and, for each i, 1 < i < k, (ail,. .. ,a,,) is a permutation of (1,...,n). Thus the j3 h

system will consist of components a1i, a 2j,..., aki. The reliability of this system will be

assumed to be given by R1(A) = R(c1 3 , C2 ,... ,Ck) where cii is an attribute associated

with component a1i . This attribute may be the actual reliability of the component or some

concommitant of it. Without loss of generality we may assume that

(4-1) ell !_ ci2 _' _cik, 1 < S* < k

The use of a general function R as above allows us to consider more general systems than

series systems. We will assume that the function R satisfies the following two conditions

which are generally satisfied by reliability functions:

(4-2) R(cl,...,ck) is nondecreasing in each coordinate,

and for (cj,...,ck), (dj,...,dk),

(4-3) R(c,,...,ck) + R(dl,...,dk) _ R(c1 Vdl,...,ck Vdk) + R(c, Ad,...,ck Adk),

where cvd = max(c, d) and cAd = min(c, d). Such reliability functions occur, for instance,

when R(cl,...,ck) = P(Y !_ c 1,... ,Yk !5 C), where Y,...,Yk represent some (possibly

12
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dependent) random variables(damages) associated with the k components and the system

fails as soon as some Y exceeeds ci(threshold). Let R(A) = (R(A),..., &(A)) be the

vector of reliabilities of the n systems assembled from the partitioning A. Let A* be the

partitioning mentioned in the previous two sections, which in view of (4-1) corresponds to

A.= {j}, 1 i < k, 1 < j < n. Theorem 4.1 below shows that R(A*) maximizes R(A)

in the weak mojorization sense. We draw several interesting conclusions from this fact in

the remarks that follow.

Theorem 4.1. Let the attribute {c~i} satisfy (4-1) and let the reliability function R

satisfy (4-2) and (4-3). Then

(4-4) R(A) > R(A)

for all partitionings A, where > stands for weak majorization.

Proof. From the monotonicity of R it follows that

RI(A') R 2(A*) < ... _ R,(A').

Let R(l)(A),R(2 )(A),..., R(,,)(A) be an increasing re-arrengement of RI(A), R 2 (A),.. R,(A).

We have to prove that
n n(4-5) E Ri(A*) E R (A).

.'=r j=

for 1 < r < n. Note that

Rnt(A) = R(cIC,...,ckn)

and

R(,)(A) = n(cj,,,,...,Cka,,)

for some I with 1 < 1 < n. From the monotonicity of R, it follows that R,(A*) R(,)(A).

Again, from the monotonicity of R and from (4-3),

R(,)(A) + R(n,_1)(A) = R(cja,,,...,cka,,) + R(cio,.,.. .,Ckij) for some 1 < 1, m < n

R(cla.i V Claim,... ,Ckakj VCkakm) +R(clai, A Claim,... ,Ckak, A Ckan)

_< (,A') + R,(A*).

13
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Inequality (4-5) is established in a similar fashion for all r with 1 < r < n.

An immediate consequence of Theorem 4.1 is the following. Let 0 be a Schur-convex

function of n arguments which is non-decreasing in each argument. Then

(4-6) O(R(A*)) > O(R(A))

for all' partitionings A. The opposite inequality is true if 4 is Schur- concave and non-

increasing. This fact is used in the following remarks to point out that in many ways the

assembly from A* is optimal. Let N(A) be the number of working systems among the n

systems assembled from partitioning A.

Remark 4.2. E(N(A*)) > E(N(A)). This follows from fact that E(N(A*)) = Z7'= R'(A*)

> = Ra.(A) = E(N(A)).

For the remaining remarks below we assume that the n assembled systems are stochas-

tically independent.

Remark 4.3. Suppose that Rj(A) and_ , 1 < j < n. Then Var(N(A*)) <

Var(N(A)). Observe that the function O(xz,z 2 ,...,x, ) = -= x'(1- xj) is a Schur-

concave function which is nonincreasing in the region x, _ Iz 2 _ !,... ,x, _ Nw

VarN( )) = E'=I R(A*)(1 - R(A*)) E" I Rj(A)(1 - Rj(A)) = Var(N(A)).

Remark 4.4. P(N(A) > 1) > P(N(A) > 1). Again the function i(X1,x 2 ,... ,,) =

1 - H7=(1 - zj), where 0 < x i < 1, 1 < j :_ n, is Schur-convex and non-decreasing.

Therefore P(N(A*) 1) = 1>f7..(1-Ri(A)) I 1H;U1 (1-R,(A)) = P(N(A) > 1).

Remark 4.5. Let 2 < k < n, and assume Rj(A) > _- 1,R(A') > k-1, 1 < j < n. Then

P(N(A*) > k) > P(N(A) > k). This follows immediately from Theorem 4.1 above and

Theorem 1.1 of Boland and Proschan(1983).

14



In the above discussion we assumed that the each of the n systems required one

component from each of the k types. We can incorporate the case where fewer than k

types are needed for some systems by allowing the type- enumerator matrix to consist of

ones and zeros only. This together with condition (2-1) implies that when a system contains

one component from each of m types, 1 < m < k, then these are types 1,2,... ,m. the

reliability of such a system will depend on the attributes C,... ,c,, of the components.

We will assume that this reliability is equal to

R(ci, C2 ,. CyC ,O0i... ,oo)

where R is a function of k arguments satisfying (4-2) and (4-3). We can now introduce

fictitious extra components whose attributes are oo of the appropriate types so that the

optimal assembly problem for the present case reduces to the optimal assembly problem

of n systems from k types of components with a type-enumerator matrix consisting of all

ones.

I.
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